Cannabinoids and Neuroprotection in Basal Ganglia Disorders

Molecular Neurobiology(2007)

引用 91|浏览4
暂无评分
摘要
Cannabinoids have been proposed as clinically promising neuroprotective molecules, as they are capable to reduce excitotoxicity, calcium influx, and oxidative injury. They are also able to decrease inflammation by acting on glial processes that regulate neuronal survival and to restore blood supply to injured area by reducing the vasoconstriction produced by several endothelium-derived factors. Through one or more of these processes, cannabinoids may provide neuroprotection in different neurodegenerative disorders including Parkinson’s disease and Huntington’s chorea, two chronic diseases that are originated as a consequence of the degeneration of specific nuclei of basal ganglia, resulting in a deterioration of the control of movement. Both diseases have been still scarcely explored at the clinical level for a possible application of cannabinoids to delay the progressive degeneration of the basal ganglia. However, the preclinical evidence seems to be solid and promising. There are two key mechanisms involved in the neuroprotection by cannabinoids in experimental models of these two disorders: first, a cannabinoid receptor-independent mechanism aimed at producing a decrease in the oxidative injury and second, an induction/upregulation of cannabinoid CB2 receptors, mainly in reactive microglia, that is capable to regulate the influence of these glial cells on neuronal homeostasis. Considering the relevance of these preclinical data and the lack of efficient neuroprotective strategies in both disorders, we urge the development of further studies that allow that the promising expectatives generated for these molecules progress from the present preclinical evidence till a real clinical application.
更多
查看译文
关键词
cannabinoids,cannabinoid signaling system,CB(1)receptors,CB2 receptors,basal ganglia,neurodegeneration,neuroprotection,Parkinson's disease,Huntington's disease
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要