Spatial orientation of caloric nystagmus.

NEUROBIOLOGY OF EYE MOVEMENTS: FROM MOLECULES TO BEHAVIOR(2002)

引用 0|浏览28
暂无评分
摘要
The spatial orientation of the slow-phase eye velocity of calorie nystagmus was investigated in cynomolgus monkeys after all six semicircular canals had been plugged. Normal animals generate responses that have dominant convective components produced by movement of the endolymph in the lateral canal toward or away from gravity. As a result, the direction of horizontal slow-phase velocity induced by cold-water Irrigation changes direction with changes In head position with regard to gravity. Plugging produced a dense overgrowth of bone that blocked the flow of endolymph, but the end organs were intact. Robust caloric nystagmus was elicited after recovery, but the horizontal (yaw) component was now always toward the stimulated (ipsilateral) side, regardless of head position re gravity. The Induced caloric nystagmus had strong spatial orientation properties after canal plugging. With animals upright, the three-dimensional velocity vector of the caloric nystagmus was close to the yaw axis with small vertical and roll components. Roll components became stronger in supine and prone positions and vertical components were enhanced in the right- and left-side down positions. In each instance, the addition of the roll and vertical components moved the velocity vector of the nystagmus closer to the spatial vertical. Modeling supported the postulate that the caloric nystagmus after canal plugging is influenced by three factors: (1) a reduction In neural activity in the ampullary nerves on the stimulated side due to cooling of the nerves; (2) contraction of the endolymph in the closed space between the cupula and the plug due to cooling, which resulted in deflection of the cupula and hair cells toward the plug (ampullofugal deflection); and (3) alignment of eye velocity to gravity due to the orientation properties of velocity storage. Although convection is the most prominent factor in producing caloric responses in the normal state, our results suggest that alteration of nerve activity due to thermal effects, endolymph contraction or expansion, and velocity storage are also likely to contribute to the total response.
更多
查看译文
关键词
caloric nystagmus,semicircular canals,plugging,convection,velocity storage,vestibulo-ocular reflex,eye movements,monkey
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要