Expansion of the Variational Garrote to a Multiple Measurement Vectors Model
Scandinavian Conference on AI(2013)
Tech Univ Denmark
Abstract
The recovery of sparse signals in underdetermined systems is the focus of this paper. We propose an expanded version of the Variational Garrote, originally presented by Kappen (2011), which can use multiple measurement vectors (MMVs) to further improve source retrieval performance. We show its superiority compared to the original formulation and demonstrate its ability to correctly estimate both the sources' location and their magnitude. Finally evidence is given of the high performance of the proposed algorithm compared to other MMV models.
MoreTranslated text
Key words
Variational Garrote,sparsity,Bayesian inference,temporally correlated sources,multiple measurements vector (MMV)
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
EEG Source Reconstruction Using Sparse Basis Function Representations.
2014 International Workshop on Pattern Recognition in Neuroimaging 2014
被引用1
EEG Source Reconstruction Performance As a Function of Skull Conductance Contrast
IEEE International Conference on Acoustics, Speech, and Signal Processing 2015
被引用3
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest