Large Domain Fluctuations on 50-ns Timescale Enable Catalytic Activity in Phosphoglycerate Kinase

Biophysical Journal(2010)

引用 57|浏览4
暂无评分
摘要
Large-scale domain motions of enzymes are often essential for their biological function. Phosphoglycerate kinase has a wide open domain structure with a hinge near the active center between the two domains. Applying neutron spin echo spectroscopy and small-angle neutron scattering we have investigated the internal domain dynamics. Structural analysis reveals that the holoprotein in solution seems to be more compact compared to the crystal structure but would not allow the functionally important phosphoryl transfer between the substrates if the protein were static. Brownian large-scale domain fluctuation dynamics on a timescale of 50 ns was revealed by neutron spin echo spectroscopy. The dynamics observed was compared to the displacement patterns of low-frequency normal modes. The displacements along the normal-mode coordinates describe our experimental results reasonably well. In particular, the domain movements facilitate a close encounter of the key residues in the active center to build the active configuration. The observed dynamics shows that the protein has the flexibility to allow fluctuations and displacements that seem to enable the function of the protein. Moreover, the presence of the substrates increases the rigidity, which is deduced from a faster dynamics with smaller amplitude.
更多
查看译文
关键词
structure activity relationship,structure analysis,crystal structure,diffusion,enzyme,normal modes,phosphoglycerate kinase,small angle neutron scattering,biocatalysis,neutron spin echo,catalytic activity,kinetics,low frequency,neutron diffraction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要