Low-pressure pseudospark switches for ICF pulsed power

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment(1998)

引用 6|浏览9
暂无评分
摘要
Hollow-electrode pseudospark switches are gas-filled, low-pressure, high-current plasma switches which are based on cold cathode emission. They have the capability to satisfy at least a part of switching requirements for different applications in ICF drivers. The main purpose of the submitted paper is therefore to discuss the following realistic ways for the use of pseudospark switches. There are intense international activities aimed at investigating different approaches for the ignition of an ICF capsule. Most of these efforts utilize lasers of varying wavelengths to deliver the energy to initiate the ablation of the target, the compression and ignition of the fuel, and the propagation of the fusion burn. One alternative to this scheme is to provide the drive energy in form of a light ion beam produced by an efficient pulse power accelerator. A related method uses beams of heavy ion beams from high intensity versions of traditional high-energy accelerators. Dependent on the ICF driver for the power conditioning unit (PCU) arise totally different demands. These extremely different requirements mainly rely on the very specific character of the load. Flashlamps, pumping high power lasers represent a non-linear, low-impedance load. Relatively low switching voltage is necessary, but a high charge-transfer capability. Induction cells or magnetic compression units have a high impedance. Consequently high voltage (up to several 100kV) is required to feed the energy in Marx modules and the following voltage adders produce megavolt voltages, which determines likewise the specific data of the used switch.
更多
查看译文
关键词
Pulsed power systems,Plasma switches,Gas discharge,Electrodes,Spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要