An Adaptive Subpixel Mapping Method Based on MAP Model and Class Determination Strategy for Hyperspectral Remote Sensing Imagery

IEEE T. Geoscience and Remote Sensing(2015)

引用 91|浏览16
暂无评分
摘要
The subpixel mapping technique can specify the spatial distribution of different categories at the subpixel scale by converting the abundance map into a higher resolution image, based on the assumption of spatial dependence. Traditional subpixel mapping algorithms only utilize the low-resolution image obtained by the classification image downsampling and do not consider the spectral unmixing error, which is difficult to account for in real applications. In this paper, to improve the accuracy of the subpixel mapping, an adaptive subpixel mapping method based on a maximum a posteriori (MAP) model and a winner-take-all class determination strategy, namely, AMCDSM, is proposed for hyperspectral remote sensing imagery. In AMCDSM, to better simulate a real remote sensing scene, the low-resolution abundance images are obtained by the spectral unmixing method from the downsampled original image or real low-resolution images. The MAP model is extended by considering the spatial prior models (Laplacian, total variation (TV), and bilateral TV) to obtain the high-resolution subpixel distribution map. To avoid the setting of the regularization parameter, an adaptive parameter selection method is designed to acquire the optimal subpixel mapping results. In addition, in AMCDSM, to take into account the spectral unmixing error in real applications, a winner-take-all strategy is proposed to achieve a better subpixel mapping result. The proposed method was tested on simulated, synthetic, and real hyperspectral images, and the experimental results demonstrate that the AMCDSM algorithm outperforms the traditional subpixel mapping methods and provides a simple and efficient algorithm to regularize the ill-posed subpixel mapping problem.
更多
查看译文
关键词
adaptive subpixel mapping method,remote sensing,maximum a posteriori (map),abundance map,adaptive,maximum a posteriori model,winner-take-all class determination strategy,maximum likelihood estimation,map model,spectral unmixing,subpixel mapping,amcdsm method,geophysical image processing,hyperspectral remote sensing imagery,spectral unmixing error,hyperspectral imaging,hyperspectral image,winner-take-all strategy,regularization parameter,tv
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要