Comparative Study of Predictive and Resonant Controllers in Fault-Tolerant Five-phase Induction Motor Drives

Industrial Electronics, IEEE Transactions  (2016)

引用 177|浏览12
暂无评分
摘要
One of the most attractive features of multiphase machines is the fault-tolerant capability due to the higher number of phases. Different post-fault control strategies based on hysteresis, PI-resonant and predictive techniques have been recently proposed. They all proved their capabilities to withstand fault situations and to preserve the fundamental component of the air-gap field, while achieving minimum losses, maximum torque per-ampere and reducing torque vibrations. Nonetheless, due to their recent introduction, no thorough study has yet appeared comparing the performance of these controllers. In this paper two open-phase fault-tolerant control schemes are experimentally compared in a real five-phase induction machine. The controllers being compared are based on PI-resonant and predictive control techniques, respectively. The experiments include pre- and post-fault situations. Obtained results show that both control methods offer nearly the same performance. When compared, predictive control provides faster control response and superior performance at low speed operation but is found to be less resilient to fault detection delays and to have higher current ripple. Regarding the controller implementation, it is shown that the transition from pre- to post- fault operation involves modelling the non-linear effects observed when an open-phase fault occurs for the predictive controller, and the proper retuning of the PI trackers for the PI-resonant controller, in order to ensure post-fault operation.
更多
查看译文
关键词
fault-tolerance,multiphase drives,predictive control techniques,resonant controllers,torque,vectors,fault tolerance,switches
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要