Chrome Extension
WeChat Mini Program
Use on ChatGLM

Nanogap-Enhanced Infrared Spectroscopy With Template-Stripped Wafer-Scale Arrays Of Buried Plasmonic Cavities

NANO LETTERS(2015)

Cited 133|Views7
No score
Abstract
We have combined atomic layer lithography and template stripping to produce a new class of substrates for surface-enhanced infrared absorption (SEIRA) spectroscopy. Our structure consists of a buried and U-shaped metalinsulatormetal waveguide whose folded vertical arms efficiently couple normally incident light. The insulator is formed by atomic layer deposition (ALD) of Al2O3 and precisely defines the gap size. The buried nanocavities are protected from contamination by a silicon template until ready for use and exposed by template stripping on demand. The exposed nanocavity generates strong infrared resonances, tightly confines infrared radiation into a gap that is as small as 3 nm (lambda/3300), and creates a dense array of millimeter-long hotspots. After partial removal of the insulators, the gaps are backfilled with benzenethiol molecules, generating distinct Fano resonances due to strong coupling with gap plasmons, and a SEIRA enhancement factor of 10(5) is observed for a 3 nm gap. Because of the wafer-scale manufacturability, single-digit-nanometer control of the gap size via ALD, and long-term storage enabled by template stripping, our buried plasmonic nanocavity substrates will benefit broad applications in sensing and spectroscopy.
More
Translated text
Key words
Surface-enhanced infrared absorption (SEIRA),nanogap,template stripping,surface plasmon,gap plasmon,atomic layer deposition,Fano resonance,nanocavity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined