Staged Points-To Analysis For Large Code Bases

COMPILER CONSTRUCTION (CC 2015)(2015)

引用 11|浏览15
暂无评分
摘要
Bug checker tools for Java require fine-grained heap abstractions including object-sensitive call graphs, field information for objects, and points-to sets for program variables to find bugs in source codes. However, heap abstractions coined commonly as points-to analysis, have high runtime-complexity especially when the points-to analysis is context-sensitive, and, hence, state-of-the-art points-to analyses do not scale for large code bases.In this paper, we introduce a new points-to framework that facilitates the computation of context-sensitive points-to analysis for large code bases. The framework is demand-driven, i.e., a client queries the points-to information for some program variables. The novelty of our approach is a pre-analysis technique that is a combination of staged points-to analyses with program slicing and program compaction. We implemented the proposed points-to framework in Datalog for a proprietary bug checker that could identify security vulnerabilities in the OpenJDK (TM) library which has approximately 1.3 million variables and 500,000 allocationsites. For the clients that we have chosen, our technique is able to eliminate about 73% of all variables and about 95% of allocation-sites. Thus our points-to framework scales for code bases with millions of program variables and hundreds of thousands of methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要