Dramatic changes in gene expression in different forms of Crithidia fasciculata reveal potential mechanisms for insect-specific adhesion in kinetoplastid parasites.

PLOS NEGLECTED TROPICAL DISEASES(2019)

引用 14|浏览18
暂无评分
摘要
Kinetoplastids are a group of parasites that includes several medically-important species. These human-infective species are transmitted by insect vectors in which the parasites undergo specific developmental transformations. For each species, this includes a stage in which parasites adhere to insect tissue via a hemidesmosome-like structure. Although this structure has been described morphologically, it has never been molecularly characterized. We are using Crithidia fasciculata, an insect parasite that produces large numbers of adherent parasites inside its mosquito host, as a model kinetoplastid to investigate both the mechanism of adherence and the signals required for differentiation to an adherent form. An advantage of C. fasciculata is that adherent parasites can be generated both in vitro, allowing a direct comparison to cultured swimming forms, as well as in vivo within the mosquito. Using RNAseq, we identify genes associated with adherence in C. fasciculata. As almost all of these genes have orthologs in other kinetoplastid species, our findings may reveal shared mechanisms of adherence, allowing investigation of a crucial step in parasite development and disease transmission. In addition, dual-RNAseq allowed us to explore the interaction between the parasites and the mosquito. Although the infection is well-tolerated, anti-microbial peptides and other components of the mosquito innate immune system are upregulated. Our findings indicate that C. fasciculata is a powerful model system for probing kinetoplastid-insect interactions. Author summary Kinetoplastids are single-celled parasites that cause devastating human diseases worldwide. Although this group includes many species that infect a variety of hosts, they have a great deal of shared biology. One relatively unexplored aspect of the kinetoplastid life cycle is their ability to adhere to insect tissue. For pathogenic species, adherence is critical for transmission by insect vectors. We have used an insect parasite called Crithidia fasciculata as a model kinetoplastid to reveal shared mechanisms of insect adherence. We have compared gene expression profiles of motile, non-adherent C. fasciculata to those of C. fasciculata adhered to non-living substrates and those attached to the hindgut of mosquitoes. Through this analysis, we have identified a large number of candidate proteins that may mediate adhesion in these and related parasites. In addition, our findings suggest that the mosquito immune system is responding to the presence of parasites in the gut. These results establish a new, robust system to explore the interaction between kinetoplastids and their insect hosts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要