kBF: Towards Approximate and Bloom Filter based Key-Value Storage for Cloud Computing Systems

IEEE Trans. Cloud Computing(2017)

引用 18|浏览38
暂无评分
摘要
As one of the most popular cloud services, data storage has attracted great attention in recent research efforts. Key-value (k-v) stores have emerged as a popular option for storing and querying billions of key-value pairs. So far, existing methods have been deterministic. Providing such accuracy, however, comes at the cost of memory and CPU time. In contrast, we present an approximate k-v storage for cloud-based systems that is more compact than existing methods. The tradeoff is that it may, theoretically, return errors. Its design is based on the probabilistic data structure called “bloom filter”, where we extend the classical bloom filter to support key-value operations. We call the resulting design as the kBF (key-value bloom filter). We further develop a distributed version of the kBF (d-kBF) for the unique requirements of cloud computing platforms, where multiple servers cooperate to handle a large volume of queries in a load-balancing manner. Finally, we apply the kBF to a practical problem of implementing a state machine to demonstrate how the kBF can be used as a building block for more complicated software infrastructures.
更多
查看译文
关键词
bloom filter,key-value storage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要