Oxygen binding constants and stepwise enthalpies for human and bovine hemoglobin at pH 7.6.

BIOCHEMISTRY(1992)

引用 24|浏览1
暂无评分
摘要
A high-precision thin-layer gas-solution microcalorimeter has been developed to study the binding reactions of gaseous ligands with ligand-binding macromolecules in a manner analogous to that of the Gill thin-layer optical apparatus [Doleman & Gill (1976) Anal. Biochem. 87, 127]. We have generated differential heat-binding curves of oxygen binding to human and bovine hemoglobin in phosphate buffer at pH 7.6, with the enzyme-reducing system of Hayashi et al. [(1973) Biochim. Biophys. Acta 310, 309]. Experiments were conducted at a number of different temperatures in order to expand the data field, allowing for separation of enthalpy and free energy parameters. This type of experimental analysis makes no assumptions of optical linearity between the various heme groups and reveals that the triply ligated species is measurably significant for both human and bovine hemoglobin. It was also determined that the concentration of doubly ligated species of bovine hemoglobin is relatively low. The experiments indicate that the reactions for both hemoglobins are enthalpy-driven for oxygen stepwise additions 1, 2, and 4 while being entropy-driven for step 3. Human hemoglobin oxygen-binding experiments were also performed with the Gill thin-layer optical apparatus under solution conditions identical to those used in the calorimeter. The experiments revealed that if optical linearity is assumed, the overall third equilibrium constant is negative or near zero. This indicated that either the optical cell's performance is much poorer than the thin-layer calorimeter or there is an appreciable nonlinear optical effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要