谷歌浏览器插件
订阅小程序
在清言上使用

Evaluation of Material Models Describing the Evolution of Plastic Anisotropy in Pearlitic Steel

International journal of solids and structures(2020)

引用 4|浏览2
暂无评分
摘要
Rolling contact fatigue cracks often initiate in the highly deformed surface layer of railway rails. However, the behavior of the material in this region is not well known. In an earlier study by the author the behavior of a pearlitic rail steel subjected to large shear deformations was analyzed experimentally. The purpose of the present study is to evaluate the ability of four different material models, based on [Meyer et al. INT J SOLIDS STRUCT, pp. 122–132, vol 130–131, 2018], [Shi et al. INT J PLASTICITY, pp. 170–182, vol 63, 2014], [Qin et al. INT J PLASTICITY, pp. 156–169, vol 101, 2018] and crystal plasticity, to simulate these experiments. The second and third models are formulated into the finite strain framework used in the first model, and advanced kinematic hardening laws are incorporated. To enable such an evaluation, a simulation methodology of the experimental procedure is developed and presented. It is found that the model by Shi et al. could fit the experimental data most accurately. None of the models were able to predict all features observed in the experiments. Further development of constitutive models for evolving anisotropy in pearlitic steels subjected to large shear strains is therefore needed.
更多
查看译文
关键词
Finite strains,Evolving anisotropy,Distortional hardening,Crystal plasticity,Pearlitic steel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要