The Yersinia Protein Kinase A Is a Host Factor Inducible RhoA/Rac-binding Virulence Factor

Journal of Biological Chemistry(2000)

引用 126|浏览4
暂无评分
摘要
The pathogenic yersiniae inject proteins directly into eukaryotic cells that interfere with a number of cellular processes including phagocytosis and inflammatory-associated host responses. One of these injected proteins, the Yersinia protein kinase A (YpktA), has previously been shown to affect the morphology of cultured eukaryotic cells as well as to localize to the plasma membrane following its injection into HeLa cells. Here it is shown that these activities are mediated by separable domains of YpkA. The amino terminus, which contains the kinase domain, is sufficient to localize YpkA to the plasma membrane while the carboxyl terminus of YpkA is required for YpkAs morphological effects. YpkAs carboxyl-terminal region was found to affect the levels of actin-Containing stress fibers as well as block the activation of the GTPase RhoA in Yersinia-infected cells. We show that the carboxyl-terminal region of YpkA, which contains sequences that bear similarity to the RhoA-binding domains of several eukaryotic RhoA-binding kinases, directly interacts with RhoA as well as Rac (but not Cdc42) and displays a slight but measurable binding preference for the GDP-bound form of RhoA, Surprisingly, YpkA binding to RhoA(GDP) affected neither the intrinsic nor guanine nucleotide exchange factor-mediated GDP/GTP exchange reaction suggesting that YpkA controls activated RhoA levels by a mechanism other than by simply blocking guanine nucleotide exchange factor activity. We go on to show that YpkAs kinase activity is neither dependent on nor promoted by its interaction with RhoA and Rac but is, however, entirely dependent on heat-sensitive eukaryotic factors present in HeLa cell extracts and fetal calf serum. Collectively, our data show that YpkA possesses both similarities and differences with the eukaryotic RhoA/Rac-binding kinases and suggest that the yersiniae utilize the Rho GTPases for unique activities during their interaction with eukaryotic cells.
更多
查看译文
关键词
protein kinase a
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要