Plasmonic sinks for the selective removal of long-lived states.

ACS nano(2011)

引用 46|浏览8
暂无评分
摘要
The use of plasmonic nanostructures for the removal of unwanted long-lived states is investigated. We show that the total decay rate of such a state can be increased by up to 4 orders of magnitude, as compared to its intrinsic radiative decay rate, while leaving other neighboring optical transitions unaffected. For the specific case of molecular triplet excited states, we show that the use of a "plasmonic sink" has the potential to reduce photobleaching and ground-state depletion by at least 2 orders of magnitude. We consider, in addition, the impact of such structures on the performance of organic semiconductor lasers and show that, under realistic device conditions, plasmonic sinks have the capacity to increase the achievable laser repetition rate by a factor equal to the triplet decay rate enhancement. We conclude by studying the effect of exciton diffusion on the triplet density in the presence of metallic nanoparticles.
更多
查看译文
关键词
plasmons,sinks,nanoshells,Purcell effect,quenching,triplets,organic lasers,photobleaching,nonradiative decay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要