Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film.

ACS nano(2012)

引用 57|浏览13
暂无评分
摘要
Revealing defects and inhomogeneities of physical and chemical properties beneath a surface or an interface with in-depth nanometric resolution plays a pivotal role for a high degree of reliability in nanomanufacturing processes and in materials science more generally. (1, 2) Nanoscale noncontact depth profiling of mechanical and optical properties of transparent sub-micrometric low-k material film exhibiting inhomogeneities is here achieved by picosecond acoustics interferometry. On the basis of the optical detection through the time-resolved Brillouin scattering of the propagation of a picosecond acoustic pulse, depth profiles of acoustical velocity and optical refractive index are measured simultaneously with spatial resolution of tens of nanometers. Furthermore, measuring the magnitude of this Brillouin signal provides an original method for depth profiling of photoelastic moduli. This development of a new opto-acoustical nanometrology paves the way for in-depth inspection and for subsurface nanoscale imaging of inorganic- and organic-based materials.
更多
查看译文
关键词
picosecond laser ultrasonics,nanoacoustics acousto-optics,depth profiling,transparent films,low-permittivity films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要