Neonatal alcohol exposure and the hippocampus in developing male rats: effects on behaviorally induced CA1 c-Fos expression, CA1 pyramidal cell number, and contextual fear conditioning.

Neuroscience(2012)

引用 43|浏览8
暂无评分
摘要
Rats exposed to a high binge-like dose of alcohol over postnatal days (PD) 4–9 show reductions in CA1 pyramidal cells and impairments on behavioral tasks that depend on the hippocampus. We first examined hippocampal c-Fos expression as a marker of neuronal activity in normally developing rats following different phases of the context preexposure facilitation effect (CPFE) paradigm (Experiment 1). During the CPFE, preexposure to the training context facilitates contextual conditioning to an immediate shock given on a subsequent occasion. We then examined the relationship between CPFE impairment, hippocampal cell loss, and c-Fos expression in rats exposed to alcohol over PD 4–9 (Experiment 2). Normally developing (Experiment 1), sham-intubated control (SI), and PD 4–9 alcohol-exposed (4.00 g and 5.25 g/kg/d; Experiment 2) juvenile male rats were trained on the CPFE. The CPFE occurs over three phases separated by 24 h. Starting on PD 31, rats were preexposed to Context A or Context B for 5 min. After 24 h, all rats received an immediate 1.5-mA foot shock in Context A. Finally, rats were tested for contextual conditioning in Context A on PD 33. Normally developing and SI rats preexposed to Context A showed enhanced contextual fear compared with those preexposed to Context B (Experiment 1) or alcohol-exposed rats preexposed to Context A (Experiment 2). Rats were sacrificed 2 h following different phases of the CPFE and processed for c-Fos immunohistochemistry (Experiments 1 and 2) and CA1 pyramidal cell quantification (Experiment 2). In Experiment 1, c-Fos positive (c-Fos+) cells in the dentate gyrus (DG) were consistently high among rats preexposed to Context A (Pre), Context B (No Pre), or sacrificed directly from their home cage (Home) and did not differ across CPFE phases. CA3 and CA1 c-Fos+ cells were highest during preexposure and decreased across training phases, with Group No Pre showing greater numbers of c-Fos+ cells during training than Group Pre and Controls. In Experiment 2, SI rats had greater numbers of CA1 c-Fos+ cells compared with alcohol-exposed rats, differing significantly from rats exposed to the high alcohol dose (5.25 g) over PD 4-9. Experiment 2 also revealed a linear decline in CA1 pyramidal cells across treatment groups, again with rats from the high-alcohol dose group showing significantly fewer CA1 pyramidal cells compared with SI. Our results reveal that context novelty may be a significant contributor to differential hippocampal c-Fos expression following different phases of the CPFE. In addition, lower levels of c-Fos+ cells in alcohol-exposed rats following preexposure may be related to general reductions in the number of CA1 pyramidal cells in these rats. The significant CPFE impairments in rats exposed to the lower alcohol dose (4.00 g), who show a 15% reduction in CA1 pyramidal cells compared with SI rats, highlight the sensitivity of the CPFE to hippocampal insult.
更多
查看译文
关键词
development,alcohol,hippocampus,context,memory,immediate early genes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要