Isolation of cortical mouse oligodendrocyte precursor cells.

Journal of Neuroscience Methods(2012)

引用 61|浏览9
暂无评分
摘要
The reliable isolation of primary oligodendrocyte progenitors cells (OPCs) holds promise as both a research tool and putative therapy for the study and treatment of central nervous system (CNS) disease and trauma. Stringently characterized primary mouse OPCs is of additional importance due to the power of transgenics to address mechanism(s) involving single genes. In this study, we developed and characterized a reproducible method for the primary culture of OPCs from postnatal day 5-7 mouse cerebral cortex. We enriched an O4(+) OPC population using Magnetic Activated Cell Sorting (MACS) technology. This technique resulted in an average yield of 3.68×10(5)OPCs/brain. Following isolation, OPCs were glial fibrillary acidic protein(-) (GFAP(-)) and O4(+). Following passage and with expansion, OPCs were O4(+), A2B5(+), and NG2(+). Demonstrating their bi-potentiality, mouse OPCs differentiated into either more complex, highly arborized O4(+) or O1(+) oligodendrocytes (OLs) or GFAP(+) astrocytes. This bi-potentiality is lost, however, in co-culture with rat embryonic day 15 derived dorsal root ganglia (DRG). Following 7-14 days of OPC/DRG co-culture, OPCs aligned with DRG neurites and differentiated into mature OLs as indicated by the presence of O1 and myelin basic protein (MBP) immunostaining. Addition of ciliary neurotrophic factor (CNTF) to conditioned media from OPC/DRG co-cultures improved OPC differentiation into mature O1(+) and MBP(+) OLs. This method allows for the study of primary mouse cortical OPC survival, maturation, and function without relying on oligosphere formation or the need for extensive passaging.
更多
查看译文
关键词
Oligodendrocyte,Oligodendrocyte precursor cell,OPC isolation,Cell culture,O4,A2B5,Astrocyte,Oligodendrocyte differentiation,Oligodendrocyte co-culture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要