Characterization of telomeric repeats in metaphase chromosomes and interphase nuclei of Syrian Hamster Fibroblasts

Liudmila V Solovjeva, Sergey Ju Demin,Nadezhda M Pleskach, Maria O Kuznetsova,Maria P Svetlova

Molecular cytogenetics(2012)

引用 10|浏览2
暂无评分
摘要
Background Rodents have been reported to contain large arrays of interstitial telomeric sequences (TTAGGG)n (ITS) located in pericentromeric heterochromatin. The relative sizes of telomeric sequences at the ends of chromosomes (TS) and ITS in Syrian hamster ( Mesocricetus auratus ) cells have not been evaluated yet, as well as their structural organization in interphase nuclei. Results FISH signal distribution analysis was performed on DAPI-banded metaphase chromosomes of Syrian hamster fibroblasts, and relative lengths of telomere signals were estimated. Besides well-distinguished FISH signals from ITS located on chromosomes ##2, 4, 14, 20 and X that we reported earlier, low-intensity FISH signals were visualized with different frequency of detection on all other metacentric chromosomes excluding chromosome #21. The analysis of 3D-distribution of TS in interphase nuclei demonstrated that some TS foci formed clearly distinguished associations (2–3 foci in a cluster) in the nuclei of cells subjected to FISH or transfected with the plasmid expressing telomeric protein TRF1 fused with GFP. In G0 and G1/early S-phase, the average total number of GFP-TRF1 foci per nucleus was less than that of PNA FISH foci in the corresponding cell cycle phases suggesting that TRF1 overexpression might contribute to the fusion of neighboring telomeres. The mean total number of GFP-TRF1 and FISH foci per nucleus was increased during the transition from G0 to G1/early S-phase that might be the consequence of duplication of some TS. Conclusions The relative lengths of TS in Syrian hamster cells were found to be moderately variable. All but one metacentric chromosomes contain ITS in pericentromeric heterochromatin indicating that significant rearrangements of ancestral genome occurred in evolution. Visualization of GFP-TRF1 fibrils that formed bridges between distinct telomeric foci allowed suggesting that telomere associations observed in interphase cells are reversible. The data obtained in the study provide the further insight in the structure and dynamics of telomeric sequences in somatic mammalian cells.
更多
查看译文
关键词
biomedical research,bioinformatics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要