Therapeutic potential of histaminergic compounds in the treatment of addiction and drug-related cognitive disorders.

Behavioural Brain Research(2013)

引用 17|浏览2
暂无评分
摘要
Addiction is a behavioral disorder characterized by the compulsive seeking and taking of drugs despite serious negative consequences. In particular, the chronic use of drugs impairs memory and cognitive functions, which aggravates the loss of control over drug use and complicates treatment outcome. Therefore, cognitive enhancers targeting acetylcholine have been proposed to treat addiction. Interestingly, histamine H(3) receptor (H(3)R) antagonists/inverse agonists stimulate acetylcholine transmission in different brain areas, facilitate memory in animal models and can reverse learning deficits induced by drugs such as scopolamine, dizocilpine and alcohol. Moreover, several studies found that compounds capable of activating the histaminergic system generally decrease the reinforcing effects of drugs, namely alcohol and opioids, in preclinical models of addiction. Finally, several H(3)R antagonists/inverse agonists increase histamine in the brain and have proven to be safe in humans. However, no studies have yet investigated the therapeutic potential of cognitive enhancing H(3)R antagonists/inverse agonists in the treatment of addiction in humans. The present review first describes the impact of addictive drugs on learning processes and cognitive functions that play an important role for addicts to remain abstinent. Second, our work briefly summarizes the relevant literature describing the function of histamine in learning, memory and drug addiction. Finally, the potential therapeutic use of histaminergic agents in the treatment of addiction is discussed. Our review suggests that histaminergic compounds like H(3)R antagonists/inverse agonists may improve the treatment outcome of addiction by reversing drug-induced cognitive deficits and/or diminishing the reinforcing properties of addictive drugs, especially opioids and alcohol.
更多
查看译文
关键词
Addiction,Memory,Cognition,Histamine,Histamine H3 receptor,Acetylcholine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要