Complex modulation of the expression of PKC isoforms in the rat brain during chronic type 1 diabetes mellitus.

Brain Research(2013)

引用 10|浏览3
暂无评分
摘要
We previously demonstrated that chronic hyperglycemia has a detrimental influence on neurovascular coupling in the brain—an effect linked to an alteration in the protein kinase C (PKC)-mediated phosphorylation pattern. Moreover, the activity of PKC was increased, in diabetic rat brain, in a tissue fraction composed primarily of the superficial glia limitans and pial vessels, but trended toward a decrease in cerebral cortical gray matter. However, that study did not examine the expression patterns of PKC isoforms in the rat brain. Thus, in a rat model of streptozotocin (STZ)-induced chronic type 1 diabetes mellitus (T1DM), and in non-diabetic (ND) controls, two hypotheses were addressed. First, chronic T1DM is accompanied by changes in the expression of PKC-α, βII, γ, δ, and ε Second, those changes differ when comparing cerebral cortex and glio-pial tissue. In addition, we analyzed the expression of a form of PKC-γ, phosphorylated on threonine 514 (pT514-PKC-γ), as well as the receptor for activated C kinase 1 (RACK1). The expression pattern of different PKC isoforms was altered in a complex and tissue-specific manner during chronic hyperglycemia. Notably, in the gray matter, PKC-α expression significantly decreased, while pT514-PKC-γ expression increased. However, PKC-βII, -γ, -δ, -ε, and RACK1 expressions did not change. Conversely, in glio-pial tissue, PKC-α and RACK1 were upregulated, whereas PKC-γ, pT514-PKC-γ, and PKC-ε were downregulated. PKC-βII, and PKC-δ, were unchanged. These findings suggest that the PKC activity increase previously seen in the glio-pial tissue of diabetic rats may be due to the selective upregulation of PKC-α, and ultimately lead to the impairment of neurovascular coupling.
更多
查看译文
关键词
STZ,DAG,RACK1,1BKCa,channelsKir,43PKC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要