Clopidogrel variability: role of plasma protein binding alterations.

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY(2013)

引用 11|浏览2
暂无评分
摘要
Aim The large inter-individual variability in clopidogrel response is attributed to pharmacokinetics. Although, it has been used since the late 1990s the pharmacokinetic fate of clopidogrel and its metabolites are poorly explained. The variable response to clopidogrel is believed to be multi-factorial, caused both by genetic and non-genetic factors. In this study, we examined whether the inactive metabolite can alter the plasma protein binding of the active metabolite, thus explaining the large inter-individual variability associated with clopidogrel response. Methods Female subjects (n = 28) with stable coronary disease who were not taking clopidogrel were recruited. Serial blood samples were collected following 300mg oral dose of clopidogrel, plasma was isolated and quantified for total and free concentrations of active and inactive metabolites. Inhibition of platelet aggregation was measured using the phosphorylated vasodilator stimulated phosphoprotein (VASP) assay. Results A significant correlation was observed between VASP and both free (r = 0.49, P < 0.05) and total (r = 0.49, P < 0.05) concentrations of the active metabolite. Surprisingly, we observed a significant correlation with both free (r = 0.42, P < 0.05) and total (r = 0.67, P < 0.001) concentrations of the inactive metabolite as well. Free fractions of the active metabolite rose with increasing protein binding of the inactive metabolite (P < 0.05). Conclusions The above in vivo data suggest that the inactive metabolite displaces the active metabolite from binding sites. Thus, the inactive metabolite might increase the free concentration of the active metabolite leading to enhanced inhibition of platelet aggregation. The plasma protein binding mechanism would offer an additional therapeutic strategy to optimize clopidogrel pharmacotherapy.
更多
查看译文
关键词
clopidogrel,inter-individual variability,pharmacokinetics,plasma protein binding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要