谷歌浏览器插件
订阅小程序
在清言上使用

Effects of Α1‐acid Glycoprotein Fucosylation on Its Ca2+ Mobilizing Capacity in Neutrophils

Scandinavian journal of immunology(2009)

引用 12|浏览3
暂无评分
摘要
We recently showed that the acute-phase protein alpha(1)-acid glycoprotein (AGP) induces rises in cytosolic calcium concentration, [Ca2+](i,) in neutrophils through sialic acid dependent interactions with the neutrophil receptors siglec-5 and/or siglec-14. Whereas both siglec-5 and siglec-14 have a relatively broad specificity for sialylated oligosaccharide structures, including both structures with terminal alpha 2-3 or alpha 2-6 linked sialic acid, there is a markedly reduced affinity to the fucosylated epitope sialyl Lewis x (SLe(x)). Increased fucosylation, leading to increased expression of SLe(x) on AGP is commonly associated with inflammatory conditions. In the present study, we investigated whether an increased SLe(x) expression would affect the Ca2+-mobilizing effect of AGP. AGP with elevated fucose content isolated from patients with untreated chronic joint inflammation showed a decreased [Ca2+](i) modulatory effect on neutrophils compared to normally fucosylated AGP. Furthermore a hyperfucosylated AGP form produced by in vitro fucosylation, that consequently had an elevated expression of SLe(x), could not elicit a [Ca2+](i) increase in neutrophils. The role of the carbohydrate portion of AGP in modulating neutrophil responses was further strengthened by showing that synthetic glycoconjugates carrying oligosaccharides with terminal alpha 2-3 or alpha 2-6 linked sialic acid were able to mimic the Ca2+-mobilizing effect of AGP whereas a synthetic glycoconjugate carrying SLe(x) was not. Based on these data, we conclude that increased fucosylation can alter the ability of AGP to induce neutrophil signalling and further supports an important role of the oligosaccharide chains of AGP in the modulation of leukocyte functions during an inflammatory process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要