谷歌浏览器插件
订阅小程序
在清言上使用

Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application.

Bone(2013)

引用 35|浏览2
暂无评分
摘要
Root resorption is an adverse outcome of orthodontic tooth movement. However, there have been no available approaches for the protection and repair of root resorption. The aim of this study was to evaluate the effects of low-intensity pulsed ultrasound (LIPUS) on root resorption during experimental tooth movement and the effects of LIPUS in the RANKL/OPG mechanism in osteoblasts and cementoblasts in vitro. Twenty four Wistar strain male rats of 12-week-old were used in this study. The upper first molars were subjected to experimental movement in the mesial direction for 1–3weeks. Through the experimental periods, the right upper first maxillary molar was exposed to LIPUS (LIPUS group) every day for 1, 2 or 3weeks. The nature of root resorption was observed and then quantified by histomorphometric analysis. In the 2weeks period, significantly greater amount of tooth movement was observed in the LIPUS group (p<0.05). In addition, LIPUS group showed less root resorption lacunae and lower number of odontoclasts. In the period of 3weeks, LIPUS group presented significantly shorter length of root resorption lacunae and smaller amount of root resorption area (p<0.01). The number of odontoclasts and osteoclasts was also significantly lower in the LIPUS group (p<0.01 and p<0.05, respectively). However, no significant differences could be found regarding the amount of tooth movement. It is shown that LIPUS exposure significantly reduced the degree of root resorption during tooth movement without interrupting tooth movement. In vitro experiments showed that MC3T3-1 constitutively expressed higher levels of RANKL and RANTES mRNA comparing to OCCM-30. However, OPG mRNA expression was much higher in OCCM-30. LIPUS stimulation significantly increased the mRNA expression of RANKL in MC3T3-E1 at 4 (p<0.01) and 12h (p<0.05), although OPG mRNA expression was not affected by LIPUS. In contrast, the expression of RANKL and OPG mRNAs were both significantly increased by LIPUS in OCCM-30 at 12h (p<0.01). Moreover, LIPUS application suppressed the up-regulation of RANKL mRNA induced by compression force in OCCM-30, but no similar effect could be observed in MC3T3-E1. In conclusion, it is suggested that LIPUS exposure significantly reduces root resorption by the suppression of cementoclastogenesis by altering OPG/RANKL ratio during orthodontic tooth movement without interfering tooth movement. LIPUS may be an effective tool to prevent root resorption during tooth movement and is applicable to clinical use in near future.
更多
查看译文
关键词
Low-intensity ultrasound,Cementoblast,Root resorption,Orthodontic tooth movement,Mechanical stimulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要