Identification and functional characterization of a novel mutation in the NKX2-1 gene: comparison with the data in the literature.

THYROID(2013)

引用 30|浏览18
暂无评分
摘要
Background: NKX2-1 mutations have been described in several patients with primary congenital hypothyroidism, respiratory distress, and benign hereditary chorea, which are classical manifestations of the brain-thyroid-lung syndrome (BTLS). Methods: The NKX2-1 gene was sequenced in the members of a Brazilian family with clinical features of BTLS, and a novel monoallelic mutation was identified in the affected patients. We introduced the mutation in an expression vector for the functional characterization by transfection experiments using both thyroidal and lung-specific promoters. Results: The mutation is a deletion of a cytosine at position 834 (ref. sequence NM_003317) (c.493delC) that causes a frameshift with formation of an abnormal protein from amino acid 165 and a premature stop at position 196. The last amino acid of the nuclear localization signal, the whole homeodomain, and the carboxy-terminus of NKX2-1 are all missing in the mutant protein, which has a premature stop codon at position 196 (p.Arg165Glyfs*32). The p.Arg165Glyfs*32 mutant does not bind DNA, and it is unable to transactivate the thyroglobulin (Tg) and the surfactant protein-C (SP-C) promoters. Interestingly, a dose-dependent dominant negative effect of the p.Arg165Glyfs*32 was demonstrated only on the Tg promoter, but not on the SP-C promoter. This effect was also noticed when the mutation was tested in presence of PAX8 or cofactors that synergize with NKX2-1 (P300 and TAZ). The functional effect was also compared with the data present in the literature and demonstrated that, so far, it is very difficult to establish a specific correlation among NKX2-1 mutations, their functional consequence, and the clinical phenotype of affected patients, thus suggesting that the detailed mechanisms of transcriptional regulation still remain unclear. Conclusions: We describe a novel NKX2-1 mutation and demonstrate that haploinsufficiency may not be the only explanation for BTLS. Our results indicate that NKX2-1 activity is also finely regulated in a tissue-specific manner, and additional studies are required to better understand the complexities of genotype-phenotype correlations in the NKX2-1 deficiency syndrome.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要