谷歌浏览器插件
订阅小程序
在清言上使用

Global protein quantification of mouse heart tissue based on the SILAC mouse.

Methods in molecular biology (Clifton, N.J.)(2013)

引用 13|浏览4
暂无评分
摘要
Metabolic labeling of living organisms with stable isotopes has become a powerful tool for global protein quantitation. The SILAC (stable isotope labeling with amino acids in cell culture) approach is based on the incorporation of nonradioactive-labeled isotopic forms of amino acids into cellular proteins. The effective SILAC labeling of immortalized cells and single-cell organisms (e.g., yeast and bacteria) was recently extended to more complex organisms, including worms, flies, and even rodents. The administration of a (13)C6-lysine (heavy) containing diet for one mouse generation leads to a complete exchange of the natural (light) isotope (12)C6-lysine. SILAC-labeled organisms are mainly used as a heavy "spike-in" standard into nonlabeled counterparts, and the combination with high-performance mass spectrometers allows for global proteomic screening. Here we used the fully labeled SILAC mice to identify proteins based on SILAC pairs from isolated cardiomyocytes, and we analyzed β-parvin-deficient hearts. Our approach confirmed the absence β-parvin and revealed simultaneously a clear up regulation of α-parvin in heart tissue. In this protocol, we describe the generation of a SILAC mouse colony and show two approaches to perform a proteome-wide analysis of heart tissue. Thus, the SILAC mouse spike-in approach is a readily available procedure and allows for a straightforward systematic analysis of disease models and knockout mice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要