Probing and tuning frictional aging at the nanoscale

SCIENTIFIC REPORTS(2013)

引用 14|浏览1
暂无评分
摘要
Time-dependent increase of frictional strength, or frictional aging, is a widely observed phenomenon both at macro and nanoscales. The frictional aging at the nanoscale may result from nucleation of capillary bridges and strengthening of chemical bonding and it imposes serious constraints and limitations on the performance and lifetime of micro- and nanomachines. Here, by analytical model and numerical simulations, we investigate the effect of inplane oscillations on friction in nanoscale contacts which exhibit aging. We demonstrate that adding a low amplitude oscillatory component to the pulling force, when applied at the right frequency, can significantly suppress aging processes and thereby reduce friction. The results obtained show that frictional measurements performed in this mode can provide significant information on the mechanism of frictional aging and stiffness of interfacial contacts.
更多
查看译文
关键词
bioinformatics,biomedical research
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要