High efficiency platinum acetylide nonlinear absorption chromophores covalently linked to poly(methyl methacrylate).

ACS applied materials & interfaces(2013)

引用 31|浏览2
暂无评分
摘要
We report three platinum acetylide acrylate monomers containing known two-photon absorption (TPA) chromophores and their covalent incorporation into polymers via free radical polymerization with methyl methacrylate. The photophysical properties of the platinum acetylide monomers and resulting poly(methyl methacrylate) (PMMA) copolymers were investigated to determine if the one- and two-photon photophysical properties of the chromophores were maintained in the copolymers. The photophysical properties of the series of copolymers were studied in solution and solid state with minimum shifts exhibited in the ground state absorption, photoluminescence, and triplet-triplet transient absorption spectra. The polymer films displayed markedly stronger phosphorescence and longer triplet excited state lifetimes than the polymers in solution or the monomers. The incorporation of the platinum acetylide chromophores into the PMMA copolymers allows the materials to be cast as thin films or into free-standing monoliths. Films with ~3.6 μm in thickness and monoliths with 1 mm path length were fabricated and examined. The nonlinear absorption responses of the polymers in solution were measured via the nanosecond z-scan method, and the solid state polymer monoliths were measured via nonlinear transmittance. Both measurements indicate that the polymers exhibited strong transmittance attenuation at input pulse energies exceeding 100 μJ.
更多
查看译文
关键词
platinum acelylide,PMMA,polymer,nonlinear absorption,z-scan
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要