The use of new surface-modified poly(2-hydroxyethyl methacrylate) hydrogels in tissue engineering: treatment of the surface with fibronectin subunits versus Ac-CGGASIKVAVS-OH, cysteine, and 2-mercaptoethanol modification.

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A(2014)

引用 12|浏览7
暂无评分
摘要
Superporous poly(2-hydroxyethyl methacrylate) is successfully used as a scaffold material for tissue engineering; however, it lacks functional groups that support cell adhesion. The objective of this study was to investigate the cell-adhesive properties of biomimetic ligands, such as laminin-derived Ac-CGGASIKVAVS-OH (SIKVAV) peptide and fibronectin subunits (Fn), as well as small molecules exemplified by 2-mercaptoethanol (ME) and cysteine (Cys), immobilized on a copolymer of 2-hydroxyethyl methacrylate (HEMA) with 2-aminoethyl methacrylate (AEMA) by a maleimide-thiol coupling reaction. The maleimide group was introduced to the P(HEMA-AEMA) hydrogels by the reaction of their amino groups with N--maleimidobutyryl-oxysuccinimide ester (GMBS). Mesenchymal stem cells (MSCs) were used to investigate the cell adhesive properties of the modified hydrogels. A significantly larger area of cell growth as well as a higher cell density were found on Fn- and SIKVAV-modified hydrogels when compared to the ME- and Cys-modified supports or neat P(HEMA-AEMA). Moreover, Fn-modification strongly stimulated cell proliferation. The ability of MSCs to differentiate into adipocytes and osteoblasts was maintained on both Fn- and SIKVAV-modifications, but it was reduced on ME-modified hydrogels and neat P(HEMA-AEMA). The results show that the immobilization of SIKVAV and Fn-subunits onto superporous P(HEMA-AEMA) hydrogels via a GMBS coupling reaction improves cell adhesive properties. The high proliferative activity observed on Fn-modified hydrogels suggests that the immobilized Fn-subunits maintain their bioactivity and thus represent a promising tool for application in tissue engineering. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 2315-2323, 2014.
更多
查看译文
关键词
2-hydroxyethyl methacrylate,IKVAV (Ile-Lys-Val-Ala-Val) peptide,fibronectin,scaffold,hydrogel,tissue engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要