Short hairpin RNA-mediated knockdown of VEGFA in Müller cells reduces intravitreal neovascularization in a rat model of retinopathy of prematurity.

The American Journal of Pathology(2013)

引用 42|浏览3
暂无评分
摘要
Vascular endothelial growth factor (VEGF) A is implicated in aberrant angiogenesis and intravitreous neovascularization (IVNV) in retinopathy of prematurity (ROP). However, VEGFA also regulates retinal vascular development and functions as a retinal neural survival factor. By using a relevant ROP model, the 50/10 oxygen-induced retinopathy (OIR) model, we previously found that broad inhibition of VEGFA bioactivity using a neutralizing antibody to rat VEGF significantly reduced IVNV area compared with control IgG but also significantly reduced body weight gain in the pups, suggesting an adverse effect. Therefore, we propose that knockdown of up-regulated VEGFA in cells that overexpress it under pathological conditions would reduce IVNV without affecting physiological retinal vascular development or overall pup growth. Herein, we determined first that the VEGFA mRNA signal was located within the inner nuclear layer corresponding to CRALBP-labeled Müller cells of pups in the 50/10 OIR model. We then developed a lentiviral-delivered miR-30eembedded shRNA against VEGFA that targeted Müller cells. Reduction of VEGFA by lentivector VEGFA-shRNAetargeting Müller cells efficiently reduced 50/10 OIR up-regulated VEGFA and IVNV in the model, without adversely affecting physiological retinal vascular development or pup weight gain. Knockdown of VEGFA in rat Müller cells by lentivector VEGFA-shRNA significantly reduced VEGFR2 phosphorylation in retinal vascular endothelial cells. Our results suggest that targeted knockdown of overexpressed VEGFA in Müller cells safely reduces IVNV in a relevant ROP model.
更多
查看译文
关键词
carrier proteins,signal transduction,alternative splicing,protein transport,vascular endothelial growth factor a
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要