Local conformational changes induced in B-DNA by ethidium intercalation.

BIOCHEMISTRY(2005)

引用 33|浏览22
暂无评分
摘要
Structural effects of binding the intercalating drug ethidium bromide (EtBr) to 160 base pair (bp) fragments of nucleosomal calf thymus DNA have been probed by the method of Raman difference spectroscopy. With the use of a near-infrared (NIR) laser source to excite the Raman spectrum at 752 nm, vibrational signatures of both the EtBr intercalant and DNA target have been identified in spectra of the drug-DNA complexes. Analysis of the results obtained on complexes consisting of 1 EtBr bound/10 bp leads to the following conclusions: (i) Raman markers diagnostic of DNA phosphodiester conformation are converted from the B type to the A type with EtBr binding, commensurate with the proportion of ethidium-bound nucleotides in the complex. (ii) Ethidium binding converts deoxynucleoside sugar puckers from the C2'-endo to the C3'-endo conformation, also consistent with binding stoichiometry. Both pyrimidine and purine deoxynucleoside sugar puckers are perturbed by the phenanthridinium ring intercalation. (iii) Phenanthridinium insertion between bases is accomplished with no apparent change in hypochromicities Of purine or pyrimidine Raman markers, indicating that base-phenanthridinium interactions provide compensatory hypochromic effects. (iv) Novel Raman markers of helix unwinding have been identified and assigned primarily to methylene deformation modes of the deoxyribosyl C2'H-2 and C5'H-2 groups. The present study provides new insights into drug-DNA recognition in solution and demonstrates the feasibility of NIR-Raman spectroscopy for structural studies of highly chromophoric DNA complexes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要