Analysis and interpretation of imaging mass spectrometry data by clustering mass-to-charge images according to their spatial similarity.

ANALYTICAL CHEMISTRY(2013)

引用 47|浏览9
暂无评分
摘要
Imaging mass spectrometry (imaging MS) has emerged in the past decade as a label-free, spatially resolved, and multipurpose bioanalytical technique for direct analysis of biological samples from animal tissue, plant tissue, biofilms, and polymer films.(1,2) Imaging MS has been successfully incorporated into many biomedical pipelines where it is usually applied in the so-called untargeted mode-capturing spatial localization of a multitude of ions from a wide mass range.(3) An imaging MS data set usually comprises thousands of spectra and tens to hundreds of thousands of mass-to-charge (m/z) images and can be as large as several gigabytes. Unsupervised analysis of an imaging MS data set aims at finding hidden structures in the data with no a priori information used and is often exploited as the first step of imaging MS data analysis. We propose a novel, easy-to-use and easy-to-implement approach to answer one of the key questions of unsupervised analysis of imaging MS data: what do all m/z images look like? The key idea of the approach is to cluster all m/z images according to their spatial similarity so that each cluster contains spatially similar m/z images. We propose a visualization of both spatial and spectral information obtained using clustering that provides an easy way to understand what all m/z images look like. We evaluated the proposed approach on matrix-assisted laser desorption ionization imaging MS data sets of a rat brain coronal section and human larynx carcinoma and discussed several scenarios of data analysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要