Time-stretched spectrally encoded angular light scattering for high-throughput real-time diagnostics

OPTICS EXPRESS(2014)

引用 12|浏览4
暂无评分
摘要
The angular light scattering profile of microscopic particles significantly depends on their morphological parameters, such as size and shape. This dependency is widely used in state-of-the-art flow cytometry methods for particle classification. We recently introduced the spectrally encoded angular light scattering (SEALS) method, with potential application in scanning flow cytometry (SFC). We show that a one-to-one wavelength-to-angle mapping enables the measurement of the angular dependence of scattered light from microscopic particles over a wide dynamic range. Improvement in dynamic range is obtained by equalizing the angular scattering dependence via spectral equalization. The resulting continuous angular spectrum is obtained without mechanical scanning, enabling single-shot measurement. Using this information, particle morphology can be determined with improved accuracy. We derive and experimentally verify an analytic wavelength-to-angle mapping model, facilitating rapid data processing. As a proof of concept, we demonstrate the method's capability of distinguishing differently sized polystyrene beads. The combination of SEALS with time-stretch dispersive Fourier transform (TS-DFT) offers real-time and high-throughput (high frame rate) measurements and renders the method suitable for integration in standard flow cytometers: By transforming the spectrum into time and slowing the time scale, using group velocity dispersion (GVD), single-shot spectra can be obtained at high throughput, using a photodiode and a real-time digitizer. The amount of group velocity dispersion is chosen to time-stretch the optical pulses, that is, to slow them down, such that they do not overlap and may be digitized in real-time.
更多
查看译文
关键词
Particle scattering measurements,Mie theory,ultrafast technology,medical optics instrumentation,time-stretch Fourier transform,label-free flow cytometry,scanning flow cytometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要