Optimization of small-molecule inhibitors of influenza virus polymerase: from thiophene-3-carboxamide to polyamido scaffolds.

JOURNAL OF MEDICINAL CHEMISTRY(2014)

引用 62|浏览9
暂无评分
摘要
Influenza virus infections represent a serious concern to public health, being characterized by high morbidity and significant mortality. To date, compounds targeting the viral ion-channel M2 or the viral neuraminidase are the drugs available for treatment of influenza, but the emergence of drug-resistant viral mutants renders the search for novel targets and their possible inhibitors a major priority. Recently, we I I demonstrated that the viral RNA-dependent RNA polymerase (RdRP) complex can be an optimal target of protein protein disruption by small molecules, with thiophene-3-carboxamide derivatives emerging as promising candidates for the development of new anti-influenza drugs with broad-spectrum activity. Here, we report a further dissection of the thiophene-3-carboxamide structure. By using a GRID molecular interaction field (MIF)-based scaffold-hopping approach, more potent and nontoxic polyamido derivatives were identified, highlighting a new space in the chemical variability of RdRP inhibitors. Finally, a possible pharmacophoric model highlighting the key features required for RdRP inhibition is proposed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要