谷歌浏览器插件
订阅小程序
在清言上使用

Exploitation of Lectinized Lipo-Polymerosome Encapsulated Amphotericin B to Target Macrophages for Effective Chemotherapy of Visceral Leishmaniasis.

Bioconjugate chemistry(2014)

引用 29|浏览11
暂无评分
摘要
We have designed lectin functionalized Lipo-polymerosome bearing Amphotericin B (Lec-AmB-L-Psome) for specific internalization via lectin receptors overexpressed on infected macrophages of mononuclear phagocytic system (MPS) for the effective management of intramacrophage diseases such as visceral leishmaniasis. The lipo-polymerosome composed of glycol chitosan-stearic acid copolymer (GC-SA25%) and model lipid cholesterol was surface-functionalized with lectin by the EDC/NHS carbodiimide coupling method. Our designed Lec-AmB-L-Psome showed >2-fold enhanced uptake and significantly higher internalization in macrophages as compared to AmB-L-Psome. Importantly, pharmacokinetic and organ distribution studies illustrate significantly higher accumulation of Lec-AmB-L-Psome in MPS especially in liver, spleen, and lung as compared to AmB-L-Psome, Ambisome, and Fungizone. The IC50 value demonstrated that Lec-AmB-L-Psome has 1.63, 2.23, and 3.43 times higher activity than AmB-L-Psome (p < 0.01), Ambisome (p < 0.05), and Fungizone (p < 0.05), respectively. Additionally, the Lec-AmB-L-Psome showed significantly higher splenic parasite inhibition (78.66 ± 3.08%) compared to Fungizone and Ambisome that caused only 56.54 ± 3.91% (p < 0.05) and 66.46 ± 2.08% (p < 0.05) parasite inhibition, respectively, in Leishmania-infected hamsters. The toxicity profile revealed that Lec-AmB-L-Psome is a safe delivery system with diminished nephrotoxicity which is a limiting factor of Fungizone application. Taken together, these studies suggest that this surface functionalized self-assembled Lec-AmB-L-Psome can introduce a new platform to specifically target macrophages for effective management of intramacrophage diseases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要