Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin.

ELIFE(2014)

引用 71|浏览13
暂无评分
摘要
Calcineurin is responsible for mediating a wide variety of cellular processes in response to dynamic calcium (Ca2+) signals, yet the precise mechanisms involved in the spatiotemporal control of calcineurin signaling are poorly understood. Here, we use genetically encoded fluorescent biosensors to directly probe the role of cytosolic Ca2+ oscillations in modulating calcineurin activity dynamics in insulin-secreting MIN6 beta-cells. We show that Ca2+ oscillations induce distinct temporal patterns of calcineurin activity in the cytosol and plasma membrane vs at the ER and mitochondria in these cells. Furthermore, we found that these differential calcineurin activity patterns are determined by variations in the subcellular distribution of calmodulin (CaM), indicating that CaM plays an active role in shaping both the spatial and temporal aspects of calcineurin signaling. Together, our findings provide new insights into the mechanisms by which oscillatory signals are decoded to generate specific functional outputs within different cellular compartments.
更多
查看译文
关键词
fret,calcium,live-cell imaging,oscillation,calmodulin,gene expression regulation,calcium signaling,mitochondria,calcineurin,endoplasmic reticulum,cell line,cytosol,fluorescence resonance energy transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要