Interaction of noradrenergic pharmacological manipulation and subthalamic stimulation on movement initiation control in Parkinson's disease.

Brain stimulation(2014)

引用 21|浏览8
暂无评分
摘要
BACKGROUND:Slowness in movement initiation (akinesia) is a cardinal feature of Parkinson's disease (PD), which is still poorly understood. Notably, akinesia is restored by subthalamic nucleus deep brain stimulation (STN-DBS) but not fully reversed by current dopaminergic treatments. It was recently suggested that this disorder is of executive nature (related to inhibitory control of response) and of non-dopaminergic origin (possibly noradrenergic). OBJECTIVE:To test the double hypothesis that: 1) the ability to control movement initiation is modified by noradrenergic neurotransmission modulation, and 2) this effect is mediated by the regulation of STN activity. METHODS:Sixteen STN-DBS PD patients were enrolled in a placebo-controlled study investigating the effects of noradrenergic attenuation by clonidine (∝2-adrenergic receptor agonist). Movement initiation latency was assessed by means of a cue-target reaction time task. Patients, who remained on their chronic dopaminergic medication, were tested on four sessions: two with placebo (ON- or OFF-DBS), and two with a 150 μg oral dose of clonidine (ON- or OFF-DBS). RESULTS:In the OFF stimulation condition, patients were locked into a mode of control maintaining inappropriate response inhibition. This dysfunctional executive setting was overcome by STN-DBS. Clonidine, however, was found to impair specifically the ability to release inhibitory control in the ON-DBS state. CONCLUSIONS:Overall our results suggest an important implication of the noradrenergic system in the pathophysiology of akinesia in PD. Reducing the noradrenergic "tonus" may even block the positive action of STN-DBS on akinesia, suggesting, at least by part, a noradrenergic-dependent STN-DBS efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要