Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort

Genetics in Medicine(2014)

引用 114|浏览17
暂无评分
摘要
Purpose: Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing. Methods: Exon-focused arrays and whole-genome chromosomal microarray analysis were used to test 14,228 and 14,000 individuals, respectively. Based on these results, we developed an algorithm to detect deletions/duplications in whole-exome sequencing data and a novel whole-exome array. Results: In the exon array cohort, we observed a positive detection rate of 2.4% (25 duplications, 318 deletions), of which 39% involved one or two exons. Chromosomal microarray analysis identified 3,345 CNVs affecting single genes (18%). We demonstrate that our whole-exome sequencing algorithm resolves CNVs of three or more exons. Conclusion: These results demonstrate the clinical utility of single-exon resolution in CNV assays. Our whole-exome sequencing algorithm approaches this resolution but is complemented by a whole-exome array to unambiguously identify intragenic CNVs and single-exon changes. These data illustrate the next advancements in CNV analysis through whole-exome sequencing and whole-exome array. Genet Med 17 8, 623–629.
更多
查看译文
关键词
array CGH,deletion,duplication,exome,next-generation sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要