Flipping the Switch on Clathrin-Mediated Endocytosis using Thermally Responsive Protein Microdomains.

Advanced functional materials(2014)

引用 18|浏览9
暂无评分
摘要
A ubiquitous approach to study protein function is to knock down activity (gene deletions, siRNA, small molecule inhibitors, etc) and study the cellular effects. Using a new methodology, this manuscript describes how to rapidly and specifically switch off cellular pathways using thermally responsive protein polymers. A small increase in temperature stimulates cytosolic elastin-like polypeptides (ELPs) to assemble microdomains. We hypothesize that ELPs fused to a key effector in a target macromolecular complex will sequester the complex within these microdomains, which will bring the pathway to a halt. To test this hypothesis, we fused ELPs to clathrin-light chain (CLC), a protein associated with clathrin-mediated endocytosis. Prior to thermal stimulation, the ELP fusion is soluble and clathrin-mediated endocytosis remains 'on.' Increasing the temperature induces the assembly of ELP fusion proteins into organelle-sized microdomains that switches clathrin-mediated endocytosis 'off.' These microdomains can be thermally activated and inactivated within minutes, are reversible, do not require exogenous chemical stimulation, and are specific for components trafficked within the clathrin-mediated endocytosis pathway. This temperature-triggered cell switch system represents a new platform for the temporal manipulation of trafficking mechanisms in normal and disease cell models and has applications for manipulating other intracellular pathways.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要