Polymorphism and evolution of ribosomal DNA in tea (Camellia sinensis, Theaceae).

Molecular phylogenetics and evolution(2015)

引用 14|浏览26
暂无评分
摘要
Ribosomal DNA (rDNA) repeats often exhibit a high level of within-species homogeneity, but intra-individual polymorphism of rDNA has been found in Camellia species. In order to reveal the evolutionary pattern of rDNA repeats in tea [Camellia sinensis (L.) O. Kuntze], we identified the 45S rDNA loci, estimated their copy number, and cloned partial regions of them from different PCR products and from digested genomic DNA. The results show that there are 3 loci (6 sites) containing 45S rDNA in the tea genome; they are located at the ends of the short arms of 6 chromosomes and consist of a maximum of ∼6500 repeat units. On one hand, 164 sequences of the 26S rDNA cloned from PCR products contained 147 haplotypes, consisting of 62% pseudogenes, 24% putative functional genes, and 14% PCR-mediated recombinants, suggesting that the 45S rDNA of tea maintains an extremely high level of polymorphism and divergence; on the other hand, rDNA fragments cloned directly from genomic DNA exhibited a very high level of homogeneity: only one of 33 rDNA fragments was from a pseudogene. These results demonstrate that although over 60% of the 26S rDNA sequences identified in PCR products belong to pseudogenes, most 45S rDNA repeats are functional genes and have undergone concerted evolution. In this study, strong PCR bias and PCR-mediated recombination greatly increased the apparent proportion of pseudogenes in PCR products. Phylogenetic analysis and genetic divergence values for 26S rDNA sequences obtained in this study show that many pseudogenes have originated independently from functional genes at different times, and despite thus escaping from concerted evolution, they have failed to be eliminated from the tea genome over a long period, some of them having even produced addition copies by rapid expansion. Importantly, our study suggests that in order to determine the true pattern of evolution of rDNA it is necessary to combine data from more than one method rather than relying only on sequences from PCR products.
更多
查看译文
关键词
Camellia sinensis,rDNA,Pseudogenes,Polymorphism,PCR bias,Concerted evolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要