Hydroxamate-Based Histone Deacetylase Inhibitors Can Protect Neurons from Oxidative Stress via a Histone Deacetylase-Independent Catalase-Like Mechanism

Chemistry & Biology(2015)

引用 36|浏览34
暂无评分
摘要
Histone deacetylase (HDAC) inhibitors have shown enormous promise for treating various disease states, presumably due to their ability to modulate acetylation of histone and non-histone proteins. Many of these inhibitors contain functional groups capable of strongly chelating metal ions. We demonstrate that several members of one such class of compounds, the hydroxamate-based HDAC inhibitors, can protect neurons from oxidative stress via an HDAC-independent mechanism. This previously unappreciated antioxidant mechanism involves the in situ formation of hydroxamate-iron complexes that catalyze the decomposition of hydrogen peroxide in a manner reminiscent of catalase. We demonstrate that while many hydroxamate-containing HDAC inhibitors display a propensity for binding iron, only a subset form active catalase mimetics capable of protecting neurons from exogenous H2O2. In addition to their impact on stroke and neurodegenerative disease research, these results highlight the possibility that HDAC-independent factors might play a role in the therapeutic effects of hydroxamate-based HDAC inhibitors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要