Hmgb1 Translocation Is Involved In The Transformation Of Autophagy Complexes And Promotes Chemoresistance In Leukaemia

INTERNATIONAL JOURNAL OF ONCOLOGY(2015)

引用 21|浏览12
暂无评分
摘要
Acute lymphoblastic leukaemia (ALL) is a common paediatric cancer and is among the most curable cancers. However, the acquisition of drug resistance is a significant obstacle to the achievement of favourable outcomes, and autophagy is regarded as a mechanism that underlies chemoresistance. In this study, RT-qPCR was used to measure the expression of HMGB1 and Beclin I in bone marrow mononuclear cells. A CCK-8 test was conducted to assess cell viability. Western blot, immunofluorescence and transmission electron microscopic analyses were performed to evaluate the autophagy levels. Immunoprecipitation analysis was performed to detect protein-protein interactions in the autophagy complexes. We found that HMGB1 expression correlated with the clinical status of ALL. In vitro, anticancer agent-induced cytotoxic effects were associated with autophagy-related drug resistance, and these effects were ameliorated by FIP200 depletion or the application of autophagy inhibitors. Moreover, the Ulkl-Atg13-FIP200 complex, which promotes HMGB1 trafficking, acted upstream of the HMGB1-Beclin1 and PI3KC3-Beclin1 complexes and played a critical role in autophagy. Targeting the transformation of autophagic complexes or HMGB1 translocation may suppress autophagy and consequently overcome chemoresistance in leukaemia.
更多
查看译文
关键词
acute lymphoblastic leukaemia, childhood leukaemia, autophagy, chemoresistance, HMGB1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要