Classification of Parkinson’s Disease Gait Using Spatial-Temporal Gait Features

Biomedical and Health Informatics, IEEE Journal of(2015)

引用 189|浏览61
暂无评分
摘要
Quantitative gait assessment is important in diagnosis and management of Parkinson's disease (PD); however, gait characteristics of a cohort are dispersed by patient physical properties including age, height, body mass, and gender, as well as walking speed, which may limit capacity to discern some pathological features. The aim of this study was twofold. First, to use a multiple regression normalization strategy that accounts for subject age, height, body mass, gender, and self-selected walking speed to identify differences in spatial-temporal gait features between PD patients and controls; and second, to evaluate the effectiveness of machine learning strategies in classifying PD gait after gait normalization. Spatial-temporal gait data during self-selected walking were obtained from 23 PD patients and 26 aged-matched controls. Data were normalized using standard dimensionless equations and multiple regression normalization. Machine learning strategies were then employed to classify PD gait using the raw gait data, data normalized using dimensionless equations, and data normalized using the multiple regression approach. After normalizing data using the dimensionless equations, only stride length, step length, and double support time were significantly different between PD patients and controls (p < 0.05); however, normalizing data using the multiple regression method revealed significant differences in stride length, cadence, stance time, and double support time. Random Forest resulted in a PD classification accuracy of 92.6% after normalizing gait data using the multiple regression approach, compared to 80.4% (support vector machine) and 86.2% (kernel Fisher discriminant) using raw data and data normalized using dimensionless equations, respectively. Our multiple regression normalization approach will assist in diagnosis and treatment of PD using spatial-temporal gait data.
更多
查看译文
关键词
Machine learning,biomechanics,regression model,walking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要