Weissella paramesenteroides WpK4 reduces gene expression of intestinal cytokines, and hepatic and splenic injuries in a murine model of typhoid fever.

BENEFICIAL MICROBES(2016)

引用 18|浏览12
暂无评分
摘要
Diarrhoea in piglets by Salmonella and other pathogens can be a serious health problem. Non-drug treatments such as probiotic microorganisms have various effects on the gastrointestinal microbiota dysbiosis and host immune system modulation. The aim of this study was to demonstrate the suitable use of Weissella paramesenteroides WpK4 strain isolated from healthy piglets as an alternative prophylactic or therapeutic treatment against Salmonella Typhimurium. Out of 37 lactic acid bacteria isolates, 24 strains belonging to the Weissella and Lactobacillus genera were analysed in vitro for desirable probiotic characteristics. The W. paramesenteroides WpK4 strain fulfilled all in vitro tests: resistance to acidic pH and bile salts, hydrophobic cell surface, antagonism against bacterial pathogens, H2O2 production and exopolysaccharide secretion, and non-transferable resistance to antibiotics. Mice fed with WpK4 showed no signs of bacterial translocation to the liver or spleen and decreased Salmonella translocation to these organs. Significantly, WpK4 intake attenuated the weight loss, fostered the preservation of intestinal architecture and integrity, and promoted survival in mice following infection with Salmonella Typhimurium. In addition, WpK4 modulated immune cellular response by inhibiting the production of pro-inflammatory cytokines and inducing anti-inflammatory mediators. These findings validate the probiotic properties of W. paramesenteroides WpK4 strain, and its eventual use in piglets.
更多
查看译文
关键词
pig,Weissella paramesenteroides WpK4,probiotics,lactic acid bacteria
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要