In human T cells mifepristone antagonizes glucocorticoid non-genomic rapid responses in terms of Na(+)/H(+)-exchange 1 activity, but not ezrin/radixin/moesin phosphorylation.

Eileen Jea Chien, Ching-Hui Hsu, Vincent Han-Jhih Chang, Enoch Pin-Yi Lin, Trista Pin-Tsun Kuo,Chau-Heng Chien,Hsiao-Yi Lin

Steroids(2016)

引用 3|浏览2
暂无评分
摘要
Glucocorticoids (GCs) and progesterone have been employed as immunosuppressive agents during pregnancy for many years. Intracellular acidification by GCs is due to a rapid non-genomic inhibition of membrane Na(+)/H(+)-exchange 1 (NHE1) activity and is followed by immunosuppression of PHA-stimulated proliferation. NHE1 is tethered to the cortical actin cytoskeleton through ezrin/radixin/moesin (ERM) proteins within lipid rafts; these regulate cell shape, migration and resistance to apoptosis. We explored whether mifepristone (RU486), an antagonist of GCs in T cells, is able to completely block rapid non-genomic responses, namely NHE1 activity and the phosphorylation C-terminal residues of ERM proteins at threonine (cp-ERM). GCs stimulate a rapid non-genomic cp-ERM response in cells within 5min. RU486 antagonized the GC-induced rapid decrease in NHE1 activity, and arrested PHA-stimulated T cells at G0/G1 phase but had no effect on the rapid increase in cp-ERM, which persisted for 24h. However, the cp-ERM response was blocked by staurosporine in both resting and GC stimulated cells. The results of RU486 antagonized the GC induced rapid decrease in NHE1 ion transport activity, but not the increase cp-ERM. This suggests that RU486 in T cells exerts its antagonistic effects at NHE1 containing plasma membrane sites and not where cp-ERM links lipid rafts to cortical cytoskeletons.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要