Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration.

JOURNAL OF PHYSICAL CHEMISTRY B(2016)

引用 14|浏览10
暂无评分
摘要
Surface adsorption of Thermomyces lanuginosus lipase (TLL)-a widely used industrial biocatalyst-is studied experimentally and theoretically at different pH and salt concentrations. The maximum achievable surface coverage on a hydrophobic surface occurs around the protein isoelectric point and adsorption is reduced when either increasing or decreasing pH, indicating that electrostatic protein-protein interactions in the adsorbed layer play an important role. Using Metropolis Monte Carlo (MC) simulations, where proteins are coarse grained to the amino acid level, we estimate the protein isoelectric point in the vicinity of charged surfaces as well as the lateral osmotic pressure in the adsorbed monolayer. Good agreement with available experimental data is achieved and we further make predictions of the protein orientation at hydrophobic and charged surfaces. Finally, we present a perturbation theory for predicting shifts in the protein isoelectric point due to close proximity to charged surfaces. Although this approximate model requires only single protein properties (mean charge and its variance), excellent agreement is found with MC simulations.
更多
查看译文
关键词
hydrophobic,protein–protein interactions,charged surfaces,salt concentration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要