Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

SCIENTIFIC REPORTS(2016)

引用 59|浏览8
暂无评分
摘要
Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al 2 O 3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications.
更多
查看译文
关键词
Nanophotonics and plasmonics,Semiconductor lasers,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要