The double mutation L109M and R448M of HIV-1 reverse transcriptase decreases fidelity of DNA synthesis by promoting mismatch elongation.

BIOLOGICAL CHEMISTRY(2015)

引用 0|浏览3
暂无评分
摘要
Changes of Leu109 and Arg448 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have as yet not been associated with altered fitness. However, in a recent study, we described that the simultaneous substitution of L109 and R448 by methionine leads to an error-producing polymerase phenotype that is not observed for the isolated substitutions. The double mutant increased the error rate of DNA-dependent DNA synthesis 3.1-fold as compared to the wildtype enzyme and showed a mutational spectrum with a fraction of 28% frameshift mutations and 48% transitions. We show here that weaker binding of DNA: DNA primer-templates as indicated by an increased dissociation rate constant (k(off)) could account for the higher frameshift error rate. Furthermore, we were able to explain the prevalence of transition mutations with the finding that HIV-1 RT variant L109M/R448M preferred misincorporation of C opposite A and elongation of C: A mismatches.
更多
查看译文
关键词
DNA/RNA replication,polymerase fidelity,reverse transcriptase,steady-state kinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要