谷歌浏览器插件
订阅小程序
在清言上使用

Ultrasensitive and Fast Voltammetric Determination of Iron in Seawater by Atmospheric Oxygen Catalysis in 500 Μl Samples.

Analytical chemistry(2015)

引用 46|浏览5
暂无评分
摘要
A new method based on adsorptive cathodic stripping voltammetry with catalytic enhancement for the determination of total dissolved iron in seawater is reported. It was demonstrated that iron detection at the ultratrace level (0.1 nM) may be achieved in small samples (500 μL) with high sensitivity, no need for purging, no added oxidant, and a limit of detection of 5 pM. The proposed method is based on the adsorption of the complex Fe/2,3-dihydroxynaphthalene (DHN) exploiting the catalytic effect of atmospheric oxygen. As opposite to the original method (Obata, H.; van den Berg, C. M. Anal. Chem. 2001, 73, 2522-2528), atmospheric oxygen dissolved in solution replaced bromate ions in the oxidation of the iron complex: removing bromate reduces the blank level and avoids the use of a carcinogenic species. Moreover, the new method is based on a recently introduced hardware that enables the determinations to be performed in 500 μL samples. The analyses were carried out on buffered samples (pH 8.15, HEPPS 0.01 M), 10 μM DHN and iron quantified by the standard addition method. The sensitivity is 49 nA nM(-1) min(-1) with 30 s deposition time and the LOD is equal to 5 pM. As a result, the whole procedure for the quantification of iron in one sample requires around 7.5 min. The new method was validated via analysis on two reference samples (SAFe S and SAFe D2) with low iron content collected in the North Pacific Ocean.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要