The Development Of Efficient X-Ray Conversion Material For Digital Mammography

JOURNAL OF INSTRUMENTATION(2012)

引用 25|浏览6
暂无评分
摘要
In this study, an experimental method based on theory is used to develop photoconductor that can replace the a-Se currently used as X-ray conversion layer in digital mammography. This is necessary because a-Se produced by the commercial fabrication method, of physical vapor deposition, has exhibited several problems when applied to digital mammography: instability due to crystallization and defect expansion due to high operating voltages, which is called the aging effect. Therefore, our work focused on developing a method of fabricating X-ray conversion films that do not suffer from crystallization and X-ray damage and optimizing the factors affecting the properties of the candidate photoconductors in order to acquire sufficient electrical signals to detect minute calcifications. The photoconductors were initially selected after the requirements for X-ray conversion materials, such as high atomic absorption, density, band-gap energy, work function, and resistivity, were examined. We selected HgI2, PbI2, and PbO because of their basic properties. Next, we experimentally investigated the performance of film samples fabricated by sedimentation and screen printing instead of physical vapor deposition. The structure of the X-ray conversion films (e.g., the thickness, electrodes, and blocking layer) were optimized for the application of a relatively low voltage to the X-ray conversion layer. The performance of the films were morphologically and electrically evaluated under mammography X-ray exposure conditions, and compared with those of a-Se films produced by physical vapor deposition. PbO appeared to be the most suitable alternative material because its electrical properties, such as the dark current, sensitivity, and signal-to-noise ratio (SNR), did not reveal the X-ray damage problem, and thus were maintained after repeated exposure to X-rays. Although PbO showed low sensitivity to X-ray exposure, its SNR was superior to that of the other materials, which is expected to improve its detective quantum efficiency, one of the factors used in evaluating images acquired by digital mammography.
更多
查看译文
关键词
Materials for solid-state detectors, X-ray detectors, X-ray mammography and scinto-and MRI-mammography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要